Un led1 o diodo emisor de luz es un dispositivo semiconductor (diodo) que emite luz incoherente de espectro reducido cuando se polariza de forma directa la unión PN del mismo y circula por él una corriente eléctrica. Este fenómeno es una forma de electroluminiscencia. El color, depende del material semiconductor empleado en la construcción del diodo y puede variar desde el ultravioleta, pasando por el visible, hasta el infrarrojo. Los diodos emisores de luz que emiten luz ultravioleta también reciben el nombre de led UV (ultraviolet light: ‘luz ultravioleta’) y los que emiten luz infrarroja se llaman IRED (InfraRed Emitting Diode).
El nombre español proviene del acrónimo inglés LED (Light-Emitting Diode: ‘diodo emisor de luz’).
Figura 1 Diodos Led
En corriente continua (CC), todos los diodos emiten cierta cantidad de radiación cuando los pares electrón-hueco se recombinan; es decir, cuando los electrones caen desde la banda de conducción (de mayor energía) a la banda de valencia (de menor energía), emitiendo fotones en el proceso. Indudablemente, por ende, su color, dependerá de la altura de la banda prohibida (diferencias de energía entre las bandas de conducción y valencia), es decir, de los materiales empleados. Los diodos convencionales, de silicio o germanio, emiten radiación infrarroja muy alejada del espectro visible. Sin embargo, con materiales especiales pueden conseguirse longitudes de onda visibles. Los ledes e IRED, además tienen geometrías especiales para evitar que la radiación emitida sea reabsorbida por el material circundante del propio diodo.
Figura 2 Distintos Colores de lo Leds
Figura 3 Materiales de Construcción de los Leds
Los primeros diodos construidos fueron los diodos infrarrojos y de color rojo, permitiendo el desarrollo tecnológico posterior la construcción de diodos para longitudes de onda cada vez menores. En particular, los diodos azules fueron desarrollados a finales de los años noventa por Shuji Nakamura, añadiéndose a los rojos y verdes desarrollados con anterioridad, lo que permitió —por combinación de los mismos— la obtención de luz blanca. El diodo de seleniuro de zinc puede emitir también luz blanca si se mezcla la luz azul que emite con la roja y verde creada por fotoluminiscencia. La más reciente innovación en el ámbito de la tecnología led son los diodos ultravioleta, que se han empleado con éxito en la producción de luz blanca para iluminar materiales fluorescentes.
Tanto los diodos azules como los ultravioletas son caros respecto de los más comunes (rojo, verde, amarillo e infrarrojo), siendo por ello menos empleados en las aplicaciones comerciales.
Los led comerciales típicos están diseñados para potencias del orden de los 30 a 60 mW. En torno a 1999 se introdujeron en el mercado diodos capaces de trabajar con potencias de 1 vatio para uso continuo; estos diodos tienen matrices semiconductoras de dimensiones mucho mayores para poder soportar tales potencias e incorporan aletas metálicas para disipar el calor generado por efecto Joule.
Hoy en día, se están desarrollando y empezando a comercializar ledes con prestaciones muy superiores a las de hace unos años y con un futuro prometedor en diversos campos, incluso en aplicaciones generales de iluminación. Como ejemplo, se puede destacar que Nichia Corporation ha desarrollado led de luz blanca con una eficiencia luminosa de 150 lm/W, utilizando para ello una corriente de polarización directa de 20 miliamperios (mA). Esta eficiencia, comparada con otras fuentes de luz en términos de rendimiento sólo, es aproximadamente 1,7 veces superior a la de la lámpara fluorescente con prestaciones de color altas (90 lm/W) y aproximadamente 11,5 veces la de una lámpara incandescente (13 lm/W). Su eficiencia es incluso más alta que la de la lámpara de vapor de sodio de alta presión (132 lm/W), que está considerada como una de las fuentes de luz más eficientes.2
El comienzo del siglo XXI ha visto aparecer los diodos OLED (Organic Light-Emitting Diode: ‘diodo orgánico de emisión de luz’, o ledes orgánicos), fabricados con materiales polímeros orgánicos semiconductores. Aunque la eficiencia lograda con estos dispositivos está lejos de la de los diodos inorgánicos, su fabricación promete ser considerablemente más barata que la de aquellos, siendo además posible depositar gran cantidad de diodos sobre cualquier superficie empleando técnicas de pintado para crear pantallas en color.
El OLED es un diodo basado en una capa electroluminiscente que está formada por una película de componentes orgánicos, y que reaccionan a una determinada estimulación eléctrica, generando y emitiendo luz por sí mismos.
No se puede hablar realmente de una tecnología OLED, sino más bien de tecnologías basadas en OLED, ya que son varias las que hay, dependiendo del soporte y finalidad a la que vayan destinados.
Figura 4 Pantallas de Leds
Figura 5 Luces de Autos
Los diodos infrarrojos (IRED) se emplean desde mediados del siglo XX en mandos a distancia de televisores, habiéndose generalizado su uso en otros electrodomésticos como equipos de aire acondicionado, equipos de música, etc., y en general para aplicaciones de control remoto, así como en dispositivos detectores, además de ser utilizados para transmitir datos entre dispositivos electrónicos como en redes de computadoras y dispositivos como teléfonos móviles, computadoras de mano, aunque esta tecnología de transmisión de datos ha dado paso al bluetooth en los últimos años, quedando casi obsoleta.
Los led se emplean con profusión en todo tipo de indicadores de estado (encendido/apagado) en dispositivos de señalización (de tránsito, de emergencia, etc.) y en paneles informativos. También se emplean en el alumbrado de pantallas de cristal líquido de teléfonos móviles, calculadoras, agendas electrónicas, etc., así como en bicicletas y usos similares.
Los leds de Luz Blanca son uno de los desarrollos más recientes y pueden considerarse como un intento muy bien fundamentado para sustituir las bombillas actuales (lámparas incandescentes) por dispositivos mucho más ventajosos. En la actualidad se dispone de tecnología que consume el 92% menos que las bombillas incandescentes de uso doméstico común y un 30% menos que la mayoría de las lámparas fluorescentes; además, estos leds pueden durar hasta 20 años y suponer un 200% menos de costes totales de propiedad si se comparan con las bombillas o tubos fluorescentes convencionales. Estas características convierten a los leds de Luz Blanca en una alternativa muy prometedora para la iluminación.
Pantalla de leds: pantalla muy brillante, formada por filas de leds verdes, azules y rojos, ordenados según la arquitectura RGB, controlados individualmente para formar imágenes vivas, muy brillantes, con un altísimo nivel de contraste, entre sus principales ventajas, frente a otras pantallas encontramos: buen soporte de color, brillo extremadamente alto, lo que le da la capacidad ser completamente visible bajo la luz del sol, es increiblemente resistente a impactos.
Para conectar led de modo que iluminen de forma continua, deben estar polarizados directamente, es decir, con el polo positivo de la fuente de alimentación conectado al ánodo y el polo negativo conectado al cátodo. Además, la fuente de alimentación debe suministrarle una tensión o diferencia de potencial superior a su tensión umbral. Por otro lado, se debe garantizar que la corriente que circula por ellos no exceda los límites admisibles, lo que dañaría irreversiblemente al led. (Esto se puede hacer de manera sencilla con una resistencia R en serie con los ledes). Unos circuitos sencillos que muestran cómo polarizar directamente leds son los siguientes:
Figura 6 Polarización Directa del Diodo Led
La diferencia de potencial Vd varía de acuerdo a las especificaciones relacionadas con el color y la potencia soportada.
En términos generales, pueden considerarse de forma aproximada los siguientes valores de diferencia de potencial:
• Rojo = 1,8 a 2,2 voltios.
• Anaranjado = 2,1 a 2,2 voltios.
• Amarillo = 2,1 a 2,4 voltios.
• Verde = 2 a 3,5 voltios.
• Azul = 3,5 a 3,8 voltios.
• Blanco = 3,6 voltios.
Luego mediante la ley de Ohm, puede calcularse la resistencia R adecuada para la tensión de la fuente (Vfuente) que utilicemos. El término I, en la fórmula, se refiere al valor de corriente para la intensidad luminosa que necesitamos. Lo común es de 10 mA para leds de baja luminosidad y 20 mA para leds de alta luminosidad; un valor superior puede inhabilitar el led o reducir de manera considerable su tiempo de vida. La ecuación se muestra a continuación.
Figura 7 Ecuación de Polarización del Diodo Led
Otros leds de una mayor capacidad de corriente conocidos como leds de potencia (1 W, 3 W, 5 W, etc.), pueden ser usados a 150 mA, 350 mA, 750 mA o incluso a 1000 mA dependiendo de las características opto-eléctricas dadas por el fabricante.
Cabe recordar que también pueden conectarse varios en serie, sumándose las diferencias de potencial en cada uno. También se pueden hacer configuraciones en paralelo, aunque este tipo de configuraciones no son muy recomendadas para diseños de circuitos con led eficientes.